The emerging WebRTC standards and the corresponding Javascript APIs allow creating web-based real-time communication systems that use audio and video without depending on external plugins such as Flash Player. I got involved in a couple of interesting projects that use the pre-standard WebRTC API available in the Google Chrome Canary release. This article describes how to get started with these projects.
The first step is to download a browser that supports WebRTC, e.g., Google Chrome Canary. In your browser address bar, go to chrome://flags, search for Enable Media Stream and click to enable it. This enables the WebRTC APIs for your web applications running in the browser. Use this browser for getting started with the following two projects.
1. The first project is voice and video on web that enables web-based audio and video conferencing among multiple participants. It uses resource-oriented data access to move all the application logic running to the client application in HTML/Javascript, whereas the server merely acts as a data store interface. The architecture enables scalable and robust systems because of the thin server. The source code of WebRTC integration is available in the SVN branch, webrtc. Follow the instructions on the project web page to install and configure the system, but use the link to the webrtc branch instead of trunk in SVN. After visiting the main page of the installed project, see the help tab to create a new conference. On the preferences page, make this conference persistent, check to enable WebRTC and uncheck to disable Flash Player for this conference. Visit the conference from multiple tabs in your browser, using different user names. Let the moderator participant enable the video checkboxes for various participants to see the audio and video flowing via WebRTC among the participants.
2. The second project is SIP in Javascript that creates a complete SIP endpoint running in your browser. It contains a SIP/SDP stack implemented in Javascript along with a SIP soft-phone demonstration application. It has two modes: Flash and WebRTC. In the WebRTC mode, it uses a variation of SIP over WebSocket and secure media over WebRTC. The default mode is to use Flash, which you can change to WebRTC as follows. Checkout the source code from SVN and put it on a web server. Install and run a SIP proxy server that supports SIP over WebSocket as mentioned on the project page. Now visit the page on your web server phone.html?network_type=WebRTC on two tabs of your browser. Follow the getting started instructions on that page to register on the first tab's phone with one name, and on the second with another, and try a call from the first to the second. This is an example program trace at the proxy server from a past experiment on how the WebRTC capabilities are negotiated between the two phones using SIP over WebSocket. In addition to the network_type, you can also supply additional parameters on the page URL to pre-configure the phone, e.g., username, displayname, outbound_proxy, target_value. Example links are available to configure as alice and bob to connect to the web and SIP server on localhost, assuming your webserver is running locally on port 8080 and SIP server on websocket port 5080. Just open the two URLs in the two tabs, click on Register on each, make a call from one to another by clicking on the Call button, accept the call from another by clicking on the Call button, and see the audio and video flowing via WebRTC between the two phones.
The first step is to download a browser that supports WebRTC, e.g., Google Chrome Canary. In your browser address bar, go to chrome://flags, search for Enable Media Stream and click to enable it. This enables the WebRTC APIs for your web applications running in the browser. Use this browser for getting started with the following two projects.
1. The first project is voice and video on web that enables web-based audio and video conferencing among multiple participants. It uses resource-oriented data access to move all the application logic running to the client application in HTML/Javascript, whereas the server merely acts as a data store interface. The architecture enables scalable and robust systems because of the thin server. The source code of WebRTC integration is available in the SVN branch, webrtc. Follow the instructions on the project web page to install and configure the system, but use the link to the webrtc branch instead of trunk in SVN. After visiting the main page of the installed project, see the help tab to create a new conference. On the preferences page, make this conference persistent, check to enable WebRTC and uncheck to disable Flash Player for this conference. Visit the conference from multiple tabs in your browser, using different user names. Let the moderator participant enable the video checkboxes for various participants to see the audio and video flowing via WebRTC among the participants.
2. The second project is SIP in Javascript that creates a complete SIP endpoint running in your browser. It contains a SIP/SDP stack implemented in Javascript along with a SIP soft-phone demonstration application. It has two modes: Flash and WebRTC. In the WebRTC mode, it uses a variation of SIP over WebSocket and secure media over WebRTC. The default mode is to use Flash, which you can change to WebRTC as follows. Checkout the source code from SVN and put it on a web server. Install and run a SIP proxy server that supports SIP over WebSocket as mentioned on the project page. Now visit the page on your web server phone.html?network_type=WebRTC on two tabs of your browser. Follow the getting started instructions on that page to register on the first tab's phone with one name, and on the second with another, and try a call from the first to the second. This is an example program trace at the proxy server from a past experiment on how the WebRTC capabilities are negotiated between the two phones using SIP over WebSocket. In addition to the network_type, you can also supply additional parameters on the page URL to pre-configure the phone, e.g., username, displayname, outbound_proxy, target_value. Example links are available to configure as alice and bob to connect to the web and SIP server on localhost, assuming your webserver is running locally on port 8080 and SIP server on websocket port 5080. Just open the two URLs in the two tabs, click on Register on each, make a call from one to another by clicking on the Call button, accept the call from another by clicking on the Call button, and see the audio and video flowing via WebRTC between the two phones.